• Call 2011 Production d'énergie propre en milieu urbain basé sur la transformation du CO2 en méthanol offrant un biocarburant neutre en CO2 utilisé dans le cadre de la mobilité urbaine et d'une autonomisation énergétique des bâtiments.

    Call 2011 CO2MeOH

    Project leader: Vanoli Ennio
    Research axis: Développement de procédés chimiques
    La transformation du CO2 en méthanol représente une énergie propre renouvelable et facile à stocker, permettant à la Suisse de relever les défis environnementaux et économiques en lien avec la problématique de l'énergie. La solution proposée offre une production de carburant neutre en CO2 pour des applications en milieu urbain (voitures et pompes à chaleur utilisant une pile au méthanol) se basant sur une vision de bâtiments et de familles autonomes du point de vue énergique.
    In November 2014 ChemTech, along with other institutes within the University of Applied Sciences Western Switzerland (HES-SO), has completed a 2.5 year R&D project resulting in the development of TRL-3 CO2 absorption and hydrogenation technology. The novel approach to CO2 capture from waste streams such as flue gas emitted from power plants consists of an absorber for CO2 separation using ionic liquids, a hydrogenation reaction and distillation to obtain the methanol product and recover the solvents. During the project various ionic liquids were synthesized and characterized in order to obtain the physical property data necessary for efficient CO2 capture. Hydrogenation batch reactions were conducted and optimized using a DOE approach to study and improve the reaction conditions. The completed project included work packages covering absorption, hydrogenation, process energy balance, electricity generation, life cycle analysis and economic evaluation. 13 technical or scientific articles were published or presented and 2 are in preparation. Although the aim of the research program has been the production of fuel methanol, the absorption and hydrogenation technology platform could be modified in order to produce other chemicals from CO2.

    Results of the project:



    • Absorption capacity: 1 mole CO2/mole ionic liquid at atmospheric pressure
    • Hydrogenation reaction: temperature < 130°C, pressure < 40 bar, using commercially available homogeneous catalysts and solvents
    • Molar yield of methanol from CO2: 48 %
    • Process electrical efficiency: 5 kW electricity input /100 kW methanol produced
    • Economic efficiency: unfavourable at this stage due to high hydrogen cost, opportunity for improvement